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Abstract. The recently published experimental data for specific heat Cp of liquid helium in zero gravity
conditions very close to the λ–transition have been discussed. We have shown that these data allow different
interpretations. They can be well interpreted within the perturbative RG approach and within our recently
developed theory, as well. Allowing the logarithmic correction, the corresponding fits lie almost on top of
each other over the whole range of the reduced temperatures t (for bin averaged data) 6.3 × 10−10 <
t < 8.8 × 10−3. However, the plot of the effective exponent αeff(t) suggests that the behaviour of Cp,
probably, changes very close to Tλ. To clarify this question, we need more accurate data for t < 10−7. In
addition, we show that the experimental data for superfluid fraction of liquid helium close to Tλ within
t ∈ [3 × 10−7; 10−4] can be better fit by our exponents ν = 9/13 � 0.6923, ∆ = 5/13 � 0.3846 than
by the RG exponents ν � 0.6705 and ∆ � 0.5. The latter ones are preferable to fit the whole measured
range t ∈ [3 × 10−7; 10−2] where, however, remarkable systematic deviations appear. Our estimated value
0.694 ± 0.017 of the asymptotic exponent ν well agrees with the theoretical prediction ν = 9/13.

PACS. 05.70.Jk Critical point phenomena – 67.40.Kh Thermodynamic properties – 65.20.+w Thermal
properties of liquids: heat capacity, thermal expansion, etc.

1 Introduction

It is widely accepted to consider the measurements in liq-
uid helium near λ–transition point T = Tλ as a crucial test
of validity of the theoretical predictions for the critical ex-
ponents, since these measurements are done with a high
degree of accuracy much closer to the critical point than
in any other experiments or numerical simulations. In par-
ticular, it is believed that accurate experimental measure-
ments of specific heat Cp of liquid helium very close to the
λ-transition point in zero gravity conditions (in space) [1]
provide a convincing evidence of overall correctness of the
perturbative RG approach. The aim of our paper is to
show that this conclusion is not unambiguous, since these
experimental data as well as those of the superfluid frac-
tion of liquid helium can be equally well or even better
interpreted by a completely different set of critical expo-
nents provided by our recently developed theory [2].

2 Interpretation of the specific heat data

It has been found in [1] that fits of experimen-
tal data for a wide range of reduced temperatures
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5 × 10−10 ≤ t ≤ 10−2 below Tλ by using two slightly
different ansatz,

Cp =
A−

α
t−α

(
1 + a−

c t∆ + b−c t2∆
)

+ B− (1)

and

Cp =
A−

α
t−α

(
1 + a−

c t∆
)

+ b−c t + B− , (2)

biased by the RG theoretical value of the correction–to–
scaling exponent ∆ = 0.529, provide well consistent values
of the specific heat exponent α = −0.0127 ± 0.0003 in a
good agreement with the value −0.01294 ± 0.0006 of the
variational perturbative theory [3] as well as in a worse,
but still acceptable, agreement with more recent estimates
α = −0.01126± 0.0010 [4] and α = −0.0146± 0.0008 [5].
Apart from the exponent α, some other quantities have
been determined and compared with the RG values in [1].
However, the agreement is not so good to conclude that
any theoretical approach, which does not agree with the
perturbative RG, is wrong. In particular, the experimental
quantity P = (1−A+/A−)/α is 4.154±0.022, whereas the
recent RG calculation (Ref. 63 in [1]) yields P = 4.433 ±
0.077.

We have found that the measured data of Cp [1] can
be well reproduced also by an ansatz of the form

Cp = t−α(C + A ln t)
(
1 + at∆

)
+ B , (3)
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Fig. 1. Percent deviation of the fitted Cp data points from
the ansatz (3) with fixed exponents α = −1/13 and ∆ = 5/13
(top) and from the ansatz (1) with the fit parameters found
in [1] (bottom).

with fixed exponents α = −1/13 and ∆ = 5/13 proposed
in [2,6]. It is consistent with the idea that specific heat
can have a logarithmic correction, as discussed in [2]. The
power–like singularity is recovered at A = 0. Note that
in [2] (cf. Eq. (60) there) an ordinary term ∼ t−α is related
the behaviour of the correlation function within the range
of wave vectors k ∼ 1/ξ, where ξ ∼ t−ν is the correlation
length, whereas the logarithmic term can appear due to
the contribution of the region k � 1/ξ. In this aspect, the
ratio A/C in (3) can be varied in a wide range of values.

From the raw data of [1] given in [7] we have produced
the set of bin averaged data points by dividing each decade
of the reduced temperature t = 1 − T/Tλ in 10 segments
of equal width when looking in the logarithmic scale. One
binned data point has been obtained by an averaging over
Cp and t values within one segment, and only the data
for the smallest t values within a twice wider interval
4.7 × 10−10 < t < 7.9× 10−10 have been merged together
into one bin to reduce the statistical error. In our bin-
ning, the averaged data points come as close to Tλ as
t ≥ 6.3× 10−10, whereas those given in [7] extend only to
t ≥ 7.94 × 10−10.

The percent deviations from the least–squares fits
to (3) and (1) are shown in Figure 1. The upper picture
corresponds to (3) with fixed exponents α = −1/13 and
∆ = 5/13 and coefficients C = −167.536, A = 11.6593,
a = 0.19788, and B = 198.26, whereas the lower one rep-

resents the fit to (1) with exponents α = −0.01264 (fit
parameter) and ∆ = 0.529 (fixed) and coefficients listed
in Table II of [1]. As in some fits made in [1], we have
assigned the error bars 0.02% to the bin averages which
originally had smaller errors. In this way, we have reduced
the impact of these data points, located at relatively large
values of the reduced temperature t, where the asymptotic
ansatz (3) is not very accurate. As we see from Figure 1,
both fits are almost identical in the whole range of the
reduced temperatures. The fit with our exponents (top) is
slightly worse at the largest t values. It can be well under-
stood, since (to ensure the stability of the fit parameters)
we have neglected the subleading correction of the kind
t2∆ included in the other ansatz (1). Besides, our fit is
even slightly better at the smallest t values: the mean per-
cent deviation for 10 smallest t values is −0.425±0.690 in
our case of (3) and −0.975±0.686 in the case of (1). These
deviations are reduced to 0.004±0.695 and −0.477±0.691,
respectively, when shifting the Tλ − T values by 0.5 nK
within the experimental error bars [1].

Note that only the possibility and not the necessity
of the logarithmic correction follows from the theory [2].
However, the presence of the logarithmic correction for
specific heat, perhaps, is a quite general feature: the log-
arithmic singularity (as a special case of the logarithmic
correction when α = 0) of specific heat is a rigorously
stated fact in 2D Ising model [8], and our Monte Carlo
simulation data for 3D Ising model [6] also supports the
logarithmic singularity. Our analysis of the experimental
data for the superfluid fraction, made in Section 3, gives
one more argument: it suggests that the exponent ν is
remarkably larger than 0.6705. According to the known
scaling relation α+dν = 2 [8], the exponent α then should
be remarkably more negative than −0.0115. It well coin-
cides with the measured data [1] in the whole range of the
reduced temperatures only if the pure power is perturbed
by a logarithmic correction, as proposed by ansatz (3).

Considering α as a fit parameter in (3), we obtain a
value α = −0.0848 ± 0.0039, which is quite close to our
theoretical prediction α = −1/13 � −0.0769. The small
systematic deviation could be caused by the error of the
asymptotic ansatz (3) at the largest t values. This problem
cannot be reliably solved by adding more correction terms
or by narrowing the range of the fit, since the minimum of
the χ2 for such fits is very shallow, i.e., the results become
poorly defined.

Alternatively, we have fit the data within a moving
window t ∈ [ti; 100ti] of the reduced temperatures to the
simplest possible ansatz

Cp = At−α + B, (4)

where ti corresponds to the i–th bin averaged data point.
It yields the effective exponent αeff(t), where t belongs
to the considered interval. For convenience, we have de-
fined it as t =

√
tmintmax, where tmin = ti is the minimal

and tmax is the maximal t value in the interval. By this
method, the result converges to the true value of α at
t → 0 irrespective to the error of the asymptotic ansatz at
finite t. It works also when the logarithmic correction is
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Fig. 2. The effective exponent αeff vs. t∆ estimated by fitting
the bin averaged data within [ti; 100ti] to the ansatz (4) with
unbiased (top) and shifted according to Tλ → Tλ + 0.5 nK
(bottom) values of the reduced temperatures. The horizontal
dot–dashed line indicates the α value −0.01264 found in [1],
whereas the dashed curve shows schematically a behaviour ex-
pected from [2].

present, only in this case the convergence is very slow, like
α−αeff(t) ∼ 1/ ln t at t → 0. The only problem is that this
method requires that the measurement errors both for Cp

and t remain sufficiently small when approaching Tλ.
We have plotted in Figure 2 the results for αeff depend-

ing on t∆ (with our exponent ∆ = 5/13) obtained by using
the unbiased values of ti (top), as well as the shifted values
t′i = ti +2.3×10−10 (for the same sets of measured points)
corresponding to Tλ → Tλ + 0.5 nK (bottom). In spite of
the large error bars, these plots show certain trend, where
the effective exponent αeff(t) tends to decrease below the
(RG) value −0.01264 found in [1]. Moreover, we have ver-
ified that the same trend is observed in both cases when
only the odd and only the even raw measurements (the
original values listed in [7]) are used. Hence, we cannot
exclude any striking scenario. For instance, αeff(t) could
converge to our asymptotic value α = −1/13, as indicated
by dashed lines, particularly, if we allow a small shift in
Tλ−T values (bottom picture) within the experimental er-
ror bars. However, such a behaviour would mean that the
logarithmic correction is absent, since the convergence is
rather fast. It would imply also that the estimation of α
from the fit over the whole measured range is not valid:
formally, such a fit looks good, but it effectively ignores

the systematic deviations at the smallest t values where
the error bars are larger.

Due to the experimental errors, the results of our anal-
ysis of the effective exponent are not conclusive, they only
point to a possible scenario. From an intuitive point of
view, it does not seem plausible that such a remarkable
change in the behaviour of the system could take place
at so small reduced temperatures (t < 10−7). However,
since the deviations from the asymptotic scaling law are
caused by the corrections to scaling, an essential param-
eter is t∆ rather than t, and the values of t∆ in Figure 2
are not so extremely small. Besides, the critical region,
where an asymptotic ansatz is valid, can be as narrow as
t∆ ∼ 0.001 even in a simple mean field model. An example
is given in [9] (p. 75). From this point of view, it is possible
that the deviations in Figure 2 represent a real physical
effect and not an artifact. On the other hand, random de-
viations in Figure 1 too often are as large as 2 standard
deviations or even larger, therefore the unusual behaviour
of αeff in Figure 2 can be ascribed also as an artifact.

3 Interpretation of the experimental data
for the superfluid fraction

Here we discuss the experimental data for the superfluid
fraction ρ in liquid He. It decreases asymptotically (at
t → 0) as ρ ∼ tζ . It is believed (see [10] and references
therein) that the exponent ζ is equal to the correlation
length exponent ν for the 3D XY model. In [2], the super-
fluid fraction of 4He measured in [10] has been discussed
with an aim to compare the experimentally observed be-
haviour at the temperatures closest to Tλ with our theo-
retical prediction ν = 9/13 [2].

The data listed in [11] allow a more precise compari-
son. For this purpose, first we have fit these data to the
asymptotic ansatz

ρ = Atν
(
1 + a1t

∆ + a2t
2∆

)
(5)

including two corrections to scaling. Similar fits over the
whole measured range t ∈ [3× 10−7; 10−2] have been con-
sidered in [10,11]. Note that at ∆ = 0.5, used in [10,11],
the second order correction reduces to the analytical
one, and (5) differs from the ansatz of [10,11] only by
a remainder term of higher order. The overall fits dis-
cussed in [10,11] yield ν � 0.6705 in agreement with
the RG prediction and in disagreement with our value
ν = 9/13. However, these fits look really good only within
t ∈ [10−5; 10−2], whereas remarkable systematic devia-
tions appear at smaller t values. This phenomenon was
discussed in [11] and no reasonable explanation was found.
In particular, the effect of gravity is negligible in these ex-
periments [11] and the ±20 nK uncertainty in Tλ −T also
does not explain these systematic deviations.

Our theory [2] provides an explanation. First, the
data cannot be well fit within the whole measured range
t ∈ [3 × 10−7; 10−2] simply because the critical region,
where the asymptotic expansion in t powers is valid, is
much narrower than 10−2. Second, the data can be well
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Fig. 3. Percent deviation of the experimental ρ (superfluid
fraction) data points from the least squares fit to ansatz (5)
within t ∈ [3 × 10−7; 10−4] with our exponents ν = 9/13, ∆ =
5/13 (top) and with the RG exponents ν = 0.6705, ∆ = 0.5
(bottom).

fit to (5) with our exponents ν = 9/13 and ∆ = 5/13
within a reduced range t ∈ [3 × 10−7; 10−4], which means
that the measured data for t < 10−5 are not anomalous,
but the region of validity of (5) is as narrow as 10−4.
The percent deviations from the least–squares fits within
t ∈ [3×10−7; 10−4] with our (top) and RG (bottom) expo-
nents are shown in Figure 3. As we see, in our case there
are no essential systematic deviations, whereas in the RG
case they are observed like in the case of the fit over the
whole measured range [10,11].

Similarly as in Section 2, we have evaluated also the
effective exponent νeff(t) as the local slope of the ln ρ vs.
ln t plot within [ti; 5ti], where ti is the reduced temper-
ature of the ith measurement and t is the middle point
of the fitted interval in the logarithmic scale. The results
depending on t∆ (with our value ∆ = 5/13) are shown
in Figure 4. Evidently, the effective exponent tends to
deviate above the value 0.6705 (dot-dot-dashed line) ob-
tained in [10,11]. On the other hand, the fit of this plot
to a parabola (solid line) gives the asymptotic estimate
ν = 0.694 ± 0.004 in excellent agreement with our theo-
retical value 9/13 � 0.6923. However, taking into account

0 0,006 0,012 t
∆0,66

0,67

0,68

0,69

νeff

Fig. 4. The effective exponent νeff vs. t∆ determined from
the local slopes of the ln ρ vs. ln t plot. The lower dot-dot-
dashed line indicates the (RG) value 0.6705 obtained in [10,11],
whereas the upper dashed line shows our theoretical value
ν = 9/13. The solid curve represents the least–squares fit to a
parabola.

the ±20 nK uncertainty in the Tλ value [10], the error bars
become larger, i.e., ν = 0.694± 0.017.

4 Conclusions

Although the opinion dominates in publications that the
perturbative RG theory is strongly confirmed by very ac-
curate measurements of the specific heat and the super-
fluid fraction in liquid helium near the λ–transition point,
our current analysis shows that these experimental data
can be well understood and interpreted also within our
recently developed theory [2].

In summary we conclude the following:

1. The critical exponents of the perturbative RG theory
look preferable from a point of view that all measured
data points must be necessarily fit on one curve and no
logarithmic corrections are normally expected. How-
ever, if we allow the logarithmic correction to specific
heat Cp, our theory also provides a good fit of Cp data
for the whole measured range. Our fit then is slightly
worse at the largest reduced temperatures t ∼ 10−2

and better at the smallest ones t ∼ 10−9. As discussed
in Section 2, the existence of the logarithmic correction
is partly supported by our estimation of the exponent
ν (Sect. 3), as well as by some general argument.

2. The analysis of the effective exponent αeff indicates
that the behaviour of Cp could be remarkably changed
very close to Tλ, in such a way that the true asymp-
totic singularity is power–like (without the logarithmic
correction) with the exponent which more probably is
closer to our value α = −1/13 than to the (RG) value
−0.01264 obtained in [1]. However, this effect can be
ascribed also as an artifact caused by the measurement
errors. Further improvement of the experimental accu-
racy for t < 10−7 would be very helpful to clarify this
question.

3. As compared to the RG exponents, our critical expo-
nents are better consistent with the closest to Tλ data
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(t ∈ [3 × 10−7; 10−4]) for the superfluid fraction
(cf. Figs. 3 and 4). A self consistent estimation in this
case yields ν = 0.694 ± 0.017 in agreement with our
theoretical prediction ν = 9/13 � 0.6923. Since the fit
over the whole measured range (t ∈ [3 × 10−7; 10−2])
in no case is really good, we argue that our way of
estimation is preferable.

This work partly has been done during my stay in 2005 at the
Institute of Physics of Rostock University, Germany.
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6. J. Kaupužs, Proceedings of SPIE 5471, 480 (2004); see

also e–print cond-mat/0405197

7. EPAPS Document No. E-PRBMD0-68-041341, see EPAPS
homepage http://www.aip.org/pubservs/epaps.html

8. Rodney J. Baxter, Exactly Solved Models in Statistical
Mechanics (Academic Press, London, 1989)
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